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Outline

• Introduction
� Stochastic Frontier Analysis (SFA) vs. Data Envelopment Analysis

(DEA)

• Convex Nonparametric Least Squares (CNLS)
� DEA as Sign-Constrained CNLS
� Corrected Convex Nonparametric Least Squares (C2NLS)
� Relaxed CNLS

• Stochastic Nonparametric Envelopment of Data (StoNED)

• Conclusion
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SFA vs. DEA

• Deviations from the regression line are considered
unobserved effects

• Deviations from the DEA frontier are assumed to be
systematic inefficiency

• Actually, there might be a mix of both. This is the motivation
for stochastic frontier analysis.
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SFA vs. DEA

• SFA vs. DEA
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Modeling Tools and Assumptions

5

� � � �

Comparison DEA SFA

Noise No Every observation is 

influenced by noise

Model Specification

(production form, noise 

distribution, inefficiency 

distribution)

No, nonparametric Yes, parametric 

functional form (linear)

Estimated Production 

Function

Piece-wise linear Smooth

Principle Minimum extrapolation Composed error term

Outlier Sensitive Not sensitive
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Parallel Development of Productivity Models
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Kuosmanen et al. (2014)



Productivity Optimization Lab Dr. Chia-Yen LeeCNLS and StoNED 7

Output

Input

• Central Tendency
• Regression-based: Ordinary Least Square (OLS)

� = � + ��

A production function is a function that represents “maximum outputs” that 
can be achieved using input vector �.

Parametric Models

Given functional form
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Parametric Models
• Deterministic Frontier

� Parametric programming (PP)

� both shifts the OLS regression line upwards to the frontier and
influences the coefficients.

� the estimated intercept and slope coefficients obtained by PP model
generally differ from the OLS estimates

• Quadratic Objective Function Linearization

� However, this linearization will generally change the PP problem.
� Schmidt (1976)

• the linearized PP � the maximum likelihood estimator (MLE) for
exponentially distributed inefficiency terms

• the quadratic PP � the MLE for the half-normal inefficiency terms.
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Output

Input

• Deterministic Frontier
• Corrected Ordinary Least Square (COLS)

• Winsten(1957), Greene (1980)

� = � + ��+max(	)

Corrected Ordinary Least Square (COLS)

A compound deviation
(	= inefficiency) 

A
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Parallel Development of Productivity Models
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Kuosmanen et al. (2014)
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Nonparametric Models

• Convex Nonparametric Least Squares (CNLS) Estimator
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min �	��
�

���
s.t.

�� = � �� + 	� , ∀�

� is monotonic increasing and concave
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CNLS

• CNLS can be traced to the seminal work of Hildreth (1954) and
was popularized by Kuosmanen (2008) as a powerful tool for
describing the average behavior of observations.
� the convexity constraint can be modeled by the Afrait inequalities

• Shortcomings
� Multiple solution (Kuosmanen and Kortelainen, 2012)

• Minimum extrapolation principle

� Computational burden (Lee et al., 2013)
• 2nd constraint will generate �(� − 1) constraints
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Linear Regression

Convexity

Monotonicity 
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Graphical Illustration of CNLS

• Single-Input Single-Output
�Each observation has its own corresponding regression 

line.
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Graphical Illustration of CNLS
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Lee et al. (2013)

100 observations
y = x0.8 + 	
x~uniform [1,10]
	~N(0, 0.72)
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DEA as Sign-Constrained CNLS

• Additive DEA 

� Radial (multiplicative) DEA measure

• DEA as Sign-Constrained CNLS (Kuosmanen and Johnson, 2010)
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Corrected Convex Nonparametric Least Squares (C2NLS)

• CNLS can be used in a two-stage shifting method. This method
is a nonparametric variant of the Corrected Ordinary Least
Squares (COLS) Winsten (1957); Greene (1980) model in which
CNLS replaces the first-stage parametric OLS regression
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Step1:

Step2:
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Graphical Illustration of CNLS

Kuosmanen and Johnson (2010)

50 observations
y =3+ln(x)−u
x~uniform [1,10]
�~N+(0, 0.72)
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Graphical Illustration of C2NLS

Kuosmanen and Johnson (2010)
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C2NLS and DEA

19



Productivity Optimization Lab Dr. Chia-Yen LeeCNLS and StoNED 20

• CNLS
� Large-Scale Optimization Problem
� Computational burden: 2nd constraint generate �(� − 1) constraints, where

� is number of observations. (out-of-memory when n is large)
� the number of hyperplanes to construct the function is generally much

smaller than n.

Relaxed CNLS

Lee et al. (2013)



Productivity Optimization Lab Dr. Chia-Yen LeeCNLS and StoNED

Relaxed CNLS

• Relaxed CNLS (Lee, et al, 2013)
� Predict the relevant concavity constraints

� Dantzig et al. (1954; 1959) used for solving the large-scale traveling-
salesman problems (TSP)

� Average running time save around 70%
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1. Solve a relaxed model
2. Initial solution identification
3. Iteratively add violated “complicating” constraints
4. Stop when the optimal solution to the relaxed model is feasible 

Initial Solution
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Parallel Development of Productivity Models
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Kuosmanen et al. (2014)
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• StoNED (Kuosmanen and Kortelainen, 2012)
� StoNED uses a composed error term to model both inefficiency and

noise without assuming a functional form and assuming only
monotonicity and convavity.

• Step1: CNLS estimates �(��|��)

• Step2: Estimation of the expected inefficiency

• Step3: Estimating the StoNED frontier production function

• Step4: Estimating firm-specific inefficiencies

Stochastic Nonparametric Envelopment of Data (StoNED) 



Productivity Optimization Lab Dr. Chia-Yen LeeCNLS and StoNED 24

• Step2: Estimation of the expected inefficiency
� Apply the method of moments to the CNLS residual 	� !"# = $� − �� to

estimate the expected value of inefficiency %. (Aigner et al., 1977)

� We know , and the second and the third central moment

� We assume and ., then they are

StoNED
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StoNED

• Step3: Estimating the StoNED frontier production function
� Shift the estimated curve upward by expected inefficiency %.

� Due to the multiple solutions of CNLS, estimate the minimum function 
(i.e., Minimum extrapolation)

� Adjust the minimum function by adding the expected inefficiency % to 
estimate the frontier using
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εi=vi-ui (composite error)

vi: Noise

ui: Inefficiency

εi

Graphical Illustration of CNLS

Kuosmanen and Kortelainen (2012)

data generation process (DGP)
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Graphical Illustration of StoNED
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StoNED
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• Step4: Estimating firm-specific inefficiencies
� In the normal – half-normal case, Jondrow, Lovell, Materov and 

Schmidt (1982) 
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Conclusion

• StoNED
� Kuosmanen (2006) ” Combining Virtues of SFA and DEA…”

• Consider the noise, without the specific functional form, ...etc.

• Extensions
� Multiplicative composite error term

� Multiple outputs
• DDF formulation

� Contextual variable
• Johnson and Kuosmanen (2011, JPA): stochastic (semi-) nonparametric

envelopment of z-variables data (StoNEZD)
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Thanks for your attention!
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